Data Smart

Data Smart Author John W. Foreman
ISBN-10 9781118839867
Year 2013-10-31
Pages 432
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Data Smart

Data Smart Author John W. Foreman
ISBN-10 9781118661468
Year 2013-11-04
Pages 409
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Data Science gets thrown around in the press like it′s magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It′s a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight–forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that′s done within the familiar environment of a spreadsheet. Why a spreadsheet? It′s comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor–neutral place to learn data science without the hype. But don′t let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non–linear programming and genetic algorithms Clustering via k–means, spherical k–means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag–of–words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You′ll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Data Smart

Data Smart Author John W. Foreman
ISBN-10 9781118661482
Year 2013-10-31
Pages 432
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Data Science for Business

Data Science for Business Author Foster Provost
ISBN-10 9781449374280
Year 2013-07-27
Pages 414
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Thinking with Data

Thinking with Data Author Max Shron
ISBN-10 9781491949863
Year 2014-01-20
Pages 94
Language en
Publisher "O'Reilly Media, Inc."
DOWNLOAD NOW READ ONLINE

Many analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills. Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. Learn a framework for scoping data projects Understand how to pin down the details of an idea, receive feedback, and begin prototyping Use the tools of arguments to ask good questions, build projects in stages, and communicate results Explore data-specific patterns of reasoning and learn how to build more useful arguments Delve into causal reasoning and learn how it permeates data work Put everything together, using extended examples to see the method of full problem thinking in action

Developing Analytic Talent

Developing Analytic Talent Author Vincent Granville
ISBN-10 9781118810095
Year 2014-03-24
Pages 336
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.

Data Science and Big Data Analytics

Data Science and Big Data Analytics Author EMC Education Services
ISBN-10 9781118876053
Year 2015-01-05
Pages 432
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Data Scientists at Work

Data Scientists at Work Author Sebastian Gutierrez
ISBN-10 9781430265993
Year 2014-12-12
Pages 364
Language en
Publisher Apress
DOWNLOAD NOW READ ONLINE

Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. "Data scientist is the sexiest job in the 21st century," according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.

Big Data

Big Data Author Bernard Marr
ISBN-10 9781118965832
Year 2015-03-09
Pages 256
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands

Storytelling with Data

Storytelling with Data Author Cole Nussbaumer Knaflic
ISBN-10 9781119002253
Year 2015-10-26
Pages 384
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!

Big Data MBA

Big Data MBA Author Bill Schmarzo
ISBN-10 9781119238843
Year 2015-12-11
Pages 312
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions.

Data Scientist

Data Scientist Author Zacharias Voulgaris, PhD
ISBN-10 9781634620284
Year 2014-05-01
Pages 278
Language en
Publisher Technics Publications
DOWNLOAD NOW READ ONLINE

As our society transforms into a data-driven one, the role of the Data Scientist is becoming more and more important. If you want to be on the leading edge of what is sure to become a major profession in the not-too-distant future, this book can show you how. Each chapter is filled with practical information that will help you reap the fruits of big data and become a successful Data Scientist: • Learn what big data is and how it differs from traditional data through its main characteristics: volume, variety, velocity, and veracity. • Explore the different types of Data Scientists and the skillset each one has. • Dig into what the role of the Data Scientist requires in terms of the relevant mindset, technical skills, experience, and how the Data Scientist connects with other people. • Be a Data Scientist for a day, examining the problems you may encounter and how you tackle them, what programs you use, and how you expand your knowledge and know-how. • See how you can become a Data Scientist, based on where you are starting from: a programming, machine learning, or data-related background. • Follow step-by-step through the process of landing a Data Scientist job: where you need to look, how you would present yourself to a potential employer, and what it takes to follow a freelancer path. • Read the case studies of experienced, senior-level Data Scientists, in an attempt to get a better perspective of what this role is, in practice. At the end of the book, there is a glossary of the most important terms that have been introduced, as well as three appendices – a list of useful sites, some relevant articles on the web, and a list of offline resources for further reading.

Big Data in Practice

Big Data in Practice Author Bernard Marr
ISBN-10 9781119231387
Year 2016-05-02
Pages 320
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Machine generated contents note: Introduction 1 Walmart: How Big Data Is Used To Drive Supermarket Performance 2 CERN: Unravelling the Secrets of the Universe with Big Data 3 Netflix: How Netflix Used Big Data to Give Us the Programmes We Want 4 Rolls-Royce: How Big Data Is Used To Drive Success In Manufacturing 5 Shell: How Big Oil Uses Big Data 6 Apixio: How Big Data Is Transforming Healthcare 7 Lotus F1 Team: How Big Data Is Essential To The Success Of Motorsport Teams 8 Pendleton & Son Butchers: Big Data for Small Business 9 US Olympic Women's Cycling Team: How Big Data Analytics Is Used To Optimize Athletes' Performance 10 ZSL: Big Data In The Zoo And To Protect Animals 11 Facebook: How Facebook Use Big Data to Understand Customers 12 John Deere: How Big Data Can Be Applied On Farms 13 Royal Bank of Scotland: Using Big Data to Make Customer Service More Personal 14 LinkedIn: How Big Data Is Used To Fuel Social Media Success 15 Microsoft: Bringing Big Data To The Masses 16 Acxiom: Fuelling Marketing With Big Data 17 US Immigration and Customs: How Big Data Is Used To Keep Passengers Safe and Prevent Terrorism 18 Nest: Bringing the Internet of Things into The Home 19 GE: How Big Data Is Fuelling the Industrial Internet 20 Etsy: How Big Data Is Used In A Crafty Way 21 Narrative Science: How Big Data Is Used To Tell Stories 22 BBC: How Big Data Is Used In The Media 23 Milton Keynes: How Big Data Is Used To Create Smarter Cities 24 Palantir: How Big Data Is Used To Help The CIA And To Detect Bombs In Afghanistan 25 Airbnb: How Big Data Is Used To Disrupt the Hospitality Industry 26 Sprint: Profiling Audiences Using Mobile Network Data 27 Dickey's Barbecue Pit: How Big Data Is Used to Gain Performance Insights Into One Of America's Most Successful Restaurant Chains 28 Caesars: Big Data At The Casino 29 Fitbit: Big Data In The Personal Fitness Arena 30 Ralph Lauren: Big Data In The Fashion Industry 31 Zynga: Big Data In The Gaming Industry 32 Autodesk: How Big Data Is Transforming The Software Industry 33 Walt Disney Parks and Resorts: How Big Data Is Transforming Our Family Holidays 34 Experian: Using Big Data To Make Lending Decisions And To Crack Down On Identity Fraud 35 Transport for London: How Big Data Is Used To Improve And Manage Public Transport In London 36 The US Government: Using Big Data To Run A Country 37 IBM Watson: Teaching Computers To Understand And Learn 38 Google: How Big Data Is At The Heart Of Google's Business Model 39 Terra Seismic: Using Big Data To Predict Earthquakes 40 Apple: How Big Data Is At The Centre Of Their Business 41 Twitter: How Twitter And IBM Deliver Customer Insights From Big Data 42 Uber: How Big Data Is At The Centre Of Uber's Transportation Business 43 Electronic Arts: Big Data In Video Gaming 44 Kaggle: Crowdsourcing Your Data Scientist 45 Amazon: How Predictive Analytics Are Used To Get A 360-Degree View Of Consumers Final Thoughts About the Author Acknowledgements Index

Monetizing Your Data

Monetizing Your Data Author Andrew Roman Wells
ISBN-10 9781119356257
Year 2017-02-27
Pages 368
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

Transforming data into revenue generating strategies and actions Organizations are swamped with data—collected from web traffic, point of sale systems, enterprise resource planning systems, and more, but what to do with it? Monetizing your Data provides a framework and path for business managers to convert ever-increasing volumes of data into revenue generating actions through three disciplines: decision architecture, data science, and guided analytics. There are large gaps between understanding a business problem and knowing which data is relevant to the problem and how to leverage that data to drive significant financial performance. Using a proven methodology developed in the field through delivering meaningful solutions to Fortune 500 companies, this book gives you the analytical tools, methods, and techniques to transform data you already have into information into insights that drive winning decisions. Beginning with an explanation of the analytical cycle, this book guides you through the process of developing value generating strategies that can translate into big returns. The companion website, www.monetizingyourdata.com, provides templates, checklists, and examples to help you apply the methodology in your environment, and the expert author team provides authoritative guidance every step of the way. This book shows you how to use your data to: Monetize your data to drive revenue and cut costs Connect your data to decisions that drive action and deliver value Develop analytic tools to guide managers up and down the ladder to better decisions Turning data into action is key; data can be a valuable competitive advantage, but only if you understand how to organize it, structure it, and uncover the actionable information hidden within it through decision architecture and guided analytics. From multinational corporations to single-owner small businesses, companies of every size and structure stand to benefit from these tools, methods, and techniques; Monetizing your Data walks you through the translation and transformation to help you leverage your data into value creating strategies.

Predictive Analytics

Predictive Analytics Author Eric Siegel
ISBN-10 9781119153658
Year 2016-01-12
Pages 368
Language en
Publisher John Wiley & Sons
DOWNLOAD NOW READ ONLINE

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.